
Powered by Microsoft Dynamics 365

Testing, a team effort
By Olaf Jorritsma

Disclaimer

THIS PRESENTATION IS
PROVIDED FOR

INFORMATIONAL AND
TRAINING PURPOSE ONLY.

IT REPRESENTS A VIEW AS OF
THE PRESENTATION DATE.

ACCURACY OF ANY
INFORMATION CAN’T BE
GUARANTEED AFTER THE

PRESENTATION.

THIS PRESENTATION IS
PROVIDED “AS-IS”.

THE PERSON WHO GIVES
THIS PRESENTATION IS NOT
A PROFESSIONAL SPEAKER.

• Food technologist (middle professional level).

• 25 Years experience in Food manufacturing and
international Food supply chain.

• ERP-software implementations as key user customer: SAP
R3, BaaN, Navision, Exact Globe, Unit4.

• 4-5 years at Schouw Informatisering (an Aptean company)
• 2 years ERP-implementation Consultant

• > 2 years product development, > 1,5 year Test Coordinator

Introduction Olaf Jorritsma

Agenda
Why?

Test Process.

The approach & tools.

Testing lessons learned.

WHY TEST?

AppSource

Or…

The road to
VALIDATION

• Automated test

• In Cronus

• 90% Code Coverage

Quality Upgradability

Focus on features
…not on bugs[Luc van Vugt]

OR…

Reduce risks Higher customer
satisfaction

• Functional suitablility

• Performance efficiency

• Compatability

• Usability

• Reliability

• Security

• Maintability

• Portability

Product Quality

ISO 25010

https://www.iso.org/standard/35733.html

https://iso25000.com/index.php/en/iso-25000-standards/iso-

25010

https://www.iso.org/standard/35733.html
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

• Effectiveness

• Efficiency

• Satisfaction

• Freedom from risk

• Context coverage

Quality in use

ISO 25010

https://www.iso.org/standard/35733.html

https://iso25000.com/index.php/en/iso-25000-standards/iso-

25010

https://www.iso.org/standard/35733.html
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

• Unified Engineering – Testing is owned by the
development teams

• Engineers spend between 20% - 50% of time writing
tests
oAverage 2 days, max 4 days

oAround 30-50 tests added per feature

• Tests are included in Definition of Done
oTarget 90% code coverage

oCross team testing after every slice

oManual test scenarios defined
o Via Azure DevOps Test Plans

o Extra Exploratory Testing via Test & Feedback extension in Google
Chrome

How

• Covers the risk

Tells us the state of the code

Test where the risk is

Test as close to the risk as possible

• Is simple to read

Person reading the test most likely not know anything about the functionality

• Just tests one thing (multiple asserts are OK)

• Is fast to execute

a Good test

TEST PROCESS

Redesign

Test attention

points

SA AA TC

Validate

Slice

& dice

Backlog
SA,FE

Use Case

‐ Automated Test (LD/DV)

‐ Microsoft Testability

Framework(LD/DV)

‐ Static Suite Test Plans

(TC/CO)

‐ Exploratory Testing (SA/UX)

SA AA UX LD CO

LD DV TC CO UX

Bugs & Known

Issues

Develop

LD DV TC CO

‐ Create Automated Tests

(LD/DV)

‐ Unit Test (LD/DV)

‐ Preparing Test Data

(TC/CO)

‐ Code Review (LD/DV))

- Data Import

- Configuration Packages

(RapidStart)

- Setup check

- Inventory creation

Deploy to Test

Sandbox

BulletpointsRe-think phase:

• Out of Scope

• Variations documented

• Requirements documented

Re-design phase:

• Test scenarios (simple Gherkin English)

• Mark test scenarios as automated or manual

Development phase:

• Automated tests

• Unit tests (not mandatory, but developers fix their own mess)

BulletpointsTest phase:

• Automated tests

• Manual tests

• Exploratory testing

• Bug fixing

Release phase:

• Known Issues & Known Bugs reporting

Each extension contains accompanying documents:

• Functional Decomposition

• Use Case

• Testscripts (automated & manual)

• Process schemes (extension and E2E)

• Work instructions (Clicklearn)

• Demo data & script

• App validation testscript (based on Foodware data topped on Cronus)

Definition

of

Done

THE APPROACH
&

TOOLS

Test Approaches

• TDD – Test Driven Developement Least important

Focus on implementation of a feature.

• BDD – Behavior Driven Development More important

Focus on the systems behavior.

• ATDD – Acceptant Test Driven Development More important

Focus on capturing the requirements.

• SDD – Scream Driven Development Most important

It is fixed if no one is screaming.

TDD BDD ATDD

Definition Focus on the

implementation of a

feature

Focus on the system’s

behavior

Focus on capturing the

requirements

Participants Developer Developer, Consultant,

Solution Architect, QA,

(Customer)

Developer, Consultant,

Solution Architect, QA,

(Customer)

Language used Same as Coding

language

Simple English,

(Gherkin)

Simple English, Gherkin

Main Focus Unit Tests Understanding

Requirements

Write Acceptance Tests

What is Gherkin?

//[Given] = Setup - With this state

//[When] = Trigger - Something is done

//[Then] = Verification - Expectation what the
code should do

Simple

Examples

// [0026] Notification will be shown when Circuit Breaker

is Open and user triggers an Alert

// [GIVEN] Circuit Breaker Setup Status = Open

// [WHEN] Alert is triggered and fails

// [THEN] Notification is shown on current used page

// [0201] Message contains unkown Sender GLN

// [GIVEN] Message with unknown Sender GLN

// [WHEN] Function Create Document is executed

// [THEN] Error: Sender GLN not found as Customer

Example

multiple GIVEN
// [0010] When applying a Production Scenario, show an error when there are reservations for

the released production order line and the unit of measure code on the BOM is different from

the one on the released production order line

// [GIVEN] A production item exists

// [GIVEN] A Sales order exists with the item

// [GIVEN] A Production Order exists with an item on the Prod. Order Line that contains

Production Scenarios

// [GIVEN] A reservation exists from the sales order on the production order line

// [GIVEN] A second production BOM exists for the item with a different UOM

// [GIVEN] An Production Scenario is filled with a Routing and the second Production BOM

// [WHEN] Click on Change Production Scenario and select the Production Scenario

// [THEN] Show error 'This production order line has a reserved quantity, It is not possible to

select a production scenario with a different unit of measure code when reservations exist.'

Example

multiple THEN

// [0402] Same APERAK is sent again

// [GIVEN] sent APERAK from Sales Order

// [WHEN] Function Export Aperak is executed

// [THEN] Message ID is incremented by 1

// [THEN] Message Date contains new date of sending

// [THEN] Message Time contains new time of sending

// [THEN] Document Date contains new date of sending

// [THEN] Document Time contains new time of sending

Example

With just 1 when

// [0025] When filling Input Quantity per Batch (WU) on Production BOM with Batch Size Calculation = "On Item" and the Production BOM Unit of Measure = BOX, check if the contents of the batch fields are correct

// [GIVEN] The Unit Of Measure Codes KG, BOX, LITER and CAN are setup

// [GIVEN] The Weight Unit (WU) in Production Batch Sizes Setup is filled with KG

// [GIVEN] Item No. 18 exist with Base Unit of Measure = BOX

// [GIVEN] Item No. 18 has in the Item Units of Measure Code = KG and Qty. per Unit of Measure = 0,894129681

// [GIVEN] Item No. 18 has in the Item Units of Measure Code = LITER and Qty. per Unit of Measure = 0,715307582

// [GIVEN] Item No. 30 exist with Base Unit of Measure = KG

// [GIVEN] Item No. 49 exist with Base Unit of Measure = LITER

// [GIVEN] Item No. 49 has in the Item Units of Measure Code = KG and Qty. per Unit of Measure = 1

// [GIVEN] Item No. 28 exist with Base Unit of Measure = KG

// [GIVEN] Item No. 52 exist with Base Unit of Measure = KG

// [GIVEN] Item No. 53 exist with Base Unit of Measure = KG

// [GIVEN] All items have Rounding Precision = 0.00001

// [GIVEN] A Production BOM exists with Unit of Measure = BOX

// [GIVEN] The Status of the Production BOM = New

// [GIVEN] The Batch Size Calculation in the Production BOM = On Item

// [GIVEN] The Batch Size for Item No. = Item No. 18

// [GIVEN] The Production BOM line is filled with Item No. 30 and Batch Size = True

// [GIVEN] The Production BOM line for Item No. 30 is filled with Input Quantity per batch (WU) = 24,038462

// [GIVEN] The Production BOM line is filled with Item No. 28 and Batch Size = True

// [GIVEN] The Production BOM line for Item No. 28 is filled with Input Quantity per batch (WU) = 2,8846154

// [GIVEN] The Production BOM line is filled with Item No. 52 and Batch Size = True

// [GIVEN] The Production BOM line for Item No. 52 is filled with Input Quantity per batch (WU) = 0,5769231

// [GIVEN] The Production BOM line is filled with Item No. 53 and Batch Size = True

// [GIVEN] The Production BOM line for Item No. 53 is filled with Input Quantity per batch (WU) = 1,34615

// [GIVEN] The Production BOM line is filled with Item No. 49 and Batch Size = True

// [GIVEN] The Production BOM line with Item No. 49 has Scrap % = 10

// [GIVEN] The Production BOM line for Item No. 49 is not filled with Input Quantity per batch (WU)

// [GIVEN] The Production BOM line for Item No.49 is not filled with Input Quantity per batch (UoM)

// [WHEN] Fill the Input Quantity per Batch (WU) on the Production BOM line for Item No. 49 with 21,153846

// [THEN] The Input Quantity per Batch (UoM) of the Production BOM line for Item No. 49 = 21,153846

// [THEN] The Output Quantity per Batch (UoM) of the Production BOM line for Item No. 49 = 19,23076909

// [THEN] The Output Quantity per Batch (WU) of the Production BOM line for Item No. 49 = 19,23076909

// [THEN] The Total Input Quantity per Batch (WU) of the Production BOM header = 49,9999965

// [THEN] The Total Input Quantity per Batch (UoM) of the Production BOM header = 44,70648092

// [THEN] The Total Output Quantity per Batch (WU) of the Production BOM header = 48,07691959

// [THEN] The Total Output Quantity per Batch (UoM) of the Production BOM header = 42,98700078

• Used for manual testing

• Hierarchical
• Test Plans

• Test Suites

• Test Cases

• Following Gherkin (Given, When, Then)

Azure DevOps

Test Plans

• https://docs.microsoft.com/en-us/azure/devops/test/?view=azure-devops

• https://www.youtube.com/watch?v=LF0hmSysWCg

https://docs.microsoft.com/en-us/azure/devops/test/?view=azure-devops
https://www.youtube.com/watch?v=LF0hmSysWCg

Azure DevOps

Test Plans

TEST PLAN TEST SUITES TEST CASES

Use Case
Use Case 2.4.2 Change Non-Conformance status to Closed with existing actions

Status Implemented in this version

Primary actor Sales Person

Goal in context To change the status of the NC to closed. To make sure various follow up actions are executed, various checks

should exist

Pre-condition - Default non-conformance actions are setup

- Non-conformance exists with various follow up actions and Status ‘In progress’

- One of the follow up actions has the checkmark ‘Return or Credit Memo required’ activated

Trigger Non-conformance registration

Scenario 1. Sales person changes status field from In Process to Closed

2. System checks if there are follow up actions with checkmark ‘Return or Credit Memo required’ activated

3. If Yes;

a. System Checks if a Sales Return Order, Posted Sales Return Receipt Sales Credit Memo or Posted Sales

Credit Memo exists with a reference to the specific non-conformance

i. If Yes: NC status is changed to Closed

ii. If NO: Message ’This non-conformance requires a follow up Return Order or Credit Memo that

currently does not exist. Are you sure you want to close this non-conformance?

4. If NO; NC status is changed to Closed

Post condition Non-conformance is closed

Variances Synchronization with teams yes/no

Exceptions

Testscenario

2.4.2

Change Non Conformance

status to Closed with existing

actions

M // [0118] Close NC when Return And Credit Required but only return Linked

// [GIVEN] NC in progress

// [GIVEN] Follow up action linked with Return required and credit required

// [GIVEN] sales return linked to NC

// [WHEN] NC change status from in progress to Closed

// [WHEN] Message pops up: This non-conformance requires a follow up Credit Memo that

currently does not exist. Are you sure you want to close this Non-conformance? --> Click YES

// [THEN] NC status is closed

// [THEN] NC "closed on" is set to workdate

Test Case in Azure DevOps

Run Test Case

• Capture screenshots

• Capture screen recording

• Capture notes

• Create bugs, tasks, test plans

• Create feedback requests

Test & Feedback

extension in
Google Chrome

• https://chrome.google.com/webstore/detail/test-feedback/gnldpbnocfnlkkicnaplmkaphfdnlplb

• https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web

• https://docs.microsoft.com/en-us/azure/devops/test/provide-stakeholder-feedback?view=azure-devops

• https://channel9.msdn.com/Series/Test-Tools-in-Visual-Studio/IntroducingTestFeedbackextension

https://chrome.google.com/webstore/detail/test-feedback/gnldpbnocfnlkkicnaplmkaphfdnlplb
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://docs.microsoft.com/en-us/azure/devops/test/provide-stakeholder-feedback?view=azure-devops
https://channel9.msdn.com/Series/Test-Tools-in-Visual-Studio/IntroducingTestFeedbackextension

Extension in browser connected to Azure DevOps

Create..

Capture..

Download recording for replay

TESTING LESSONS LEARNED

Evaluating a product by learning about it
through exploration and experimentation

[James Bach]

Analysis

James Bach, https://www.satisfice.com/

https://www.satisfice.com/

Collaboration

Other
People

Analysis

• Getting to know people

• Conversations

• Serving others

• Guiding others

• Ask for help

• Role visiting, learn from the other roles

• Telling your story

• Telling the product story

Self-Management

• Chartering your work

• Self-care

• Self-Criticism

• Focusing your work

• De-focusing your work

• Knowing when to stop

• Ethics

• Evaluation of your work

Story
Telling

Analysis

Learning

Analysis

Knowledge

• Using the web

• Consider history

• Read and analyze documentation

• Indulge curiosity

• Generating a variety of ideas

• Overproduce ideas for better selection

• Abandon ideas for faster progress

• Reusing ideas for better economy

Testing

• Encountering the product

• Sensemaking

• Analyse product risk

• Experiment

• Observe

• Detecting potential problems

• Assessing validity

• Bug reporting and advocacy

• Testability advocacy

Analysis

Encounter
Product

Test Strategy

&

Project Maturity• Early in the project: test sympathetically, focus on working features

• Middle in the project: test aggressively, find as many bugs as you can

• Near end of the project: test diversely, use all your ideas to create bugs

• Final days: test meticulously, defensive and carefull testing

B
U

G
 F

IN
D

 R
A

T
E

TIME

IDEAL BUG FIND RATE CURVE

S MDA

• Make library in extension with functions of [WHEN] as you can use them multiple times

• Don’t place to much code between GIVEN, WHEN, THEN, this improves readability

• Always test in an environment without/or only with Cronus data

• Make always extra environment with data so you can test functionality yourself or a
consultant can

• Only make testscripts that can be executed within the extension, when external source
is needed, mock it (use events with handled pattern)

• Think good about needed tests to cover your code (code coverage)

Developers learned:

• Gherkin technique (Given, When, Then) works good, you're triggered to think about the
right things

• In the beginning still searching how to describe the best scenarios, after consultation
with developers this has been improved, there is more clarity how to describe them

• Remains a critical process, always reviewing test scenarios with developer

• Still looking for distribution automatic/manual tests, how far do you want to go in
describing test scripts. If you perform certain tests automatically, do you plan the others
manually?

Functional consultants learned:

• Gherkin technique (Given, When, Then) is easy to learn and understand and will give a
good start

• Developers and consultants should understand each other and have to do it together

• Sometimes extra meetings are needed to put the noses in the same direction

• Consultants should mimic an example in the developer's environment so that the
developer knows what kind of data or minimum data is required

I learned:

•Continuous improvement.

•Software handover.

(Dutch standard NEN NPR 5325-2017)

•Risk management during development and
maintenance of custom software.

(Dutch standard NEN NPR 5326-2019)

•Continuous risk management.

The future:

Thank you for

your attention

